导师个人简介
张兵:男,九三学社社员,博士、教授、博士研究生导师、学术带头人、校交叉学科团队带头人。辽宁省高校优秀人才、辽宁省百千万人才百层次、沈阳市领军人才、辽阳市优秀专家,辽宁省优秀研究生学位论文指导教师。主持了国家自然科学基金、辽宁省自然科学基金、辽宁省高校优秀人才项目、辽宁省教育厅科研课题等项目十余个。已发表高水平学术论文100多篇,被SCI收录50余篇,授权发明专利11件,获省级以上学术奖励5项。指导毕业研究生29名,在读9名研究生。长期致力于新型膜材料制备、气体分离、废水处理、催化制氢、吸附分离等领域研究。
兼任国家自然科学基金函评专家、教育部学位中心通讯评议专家、中国化工学会专业会员、国际计算机科技协会成员、中国材料研究学会会员、全国膜与水处理行业智库专家、中国化工学会专业会员、辽阳市政协智库专家;4个学术期刊评论编辑和编委;另外Chem Eng J, J Clean Prod, Fule, Carbon、J Membr Sci、Ind Eng Chem Res、ACS Appl Surf Interf、Sep Purif Tech、Micro Meso Mater、Int J Hydrogen Energ、Environ Sci Pollut Res、J Taiwan Inst Chem Eng、Chem Eng Technol、Appl Surf Sci、化工学报、化工进展等40余个国际之名期刊审稿人。
学习和工作简历
2015.10~至今 沈阳工业大学 教授
(其中:2009—至今 硕导,2021—至今 博导,2023.7-至今 副院长)
2017.02~2020.02 开原市副市长(挂职)
2009.08~2015.09 沈阳工业大学 副教授
2014.09~2015.07 天津大学 教育部骨干教师访问学者
2007.05~2009.07 沈阳工业大学 讲师
2003.03~2007.04 大连理工大学 博士
2000.09~2003.01 沈阳化工大学 硕士
1996.09~2000.07 沈阳化工大学 本科
导师研究方向
方向1:膜分离过程开发(废水处理、水脱盐、气体分离、光催化降解水)
方向2:化工新材料的制备与结构调控(生物质、煤、石油焦、废弃物、高分子)
方向3:精细化工产品合成与应用(双酚S、MOF等有机物,油品脱氯剂、多孔炭、沸石、氧化硅、氧化钛、氧化铁等无机物)
方向4:洁净氢能制取与催化技术(膜催化甲醇制氢、负载催化剂、光催化剂)
科研奖励
荣获辽宁省高校优秀人才、辽宁省百千万人才百层次、沈阳市领军人才、辽阳市优秀专家,辽宁省优秀研究生学位论文指导教师等荣誉称号。已发表高水平学术论文100多篇,被SCI收录50多篇,授权发明专利11件,实用新型1件,参编英文专著章节2部;获省级以上学术奖励5项。
先后主讲了《高等化学反应工程》《化学反应器分析》《化工热力学》《化工工艺学》《化工过程开发》《化工过程分析与模拟》《专业外语》《文献检索与科技写作》《现代分析技术》《信息检索》《英文科技写作》《专业英语翻译》《应用文写作》《化学工程基础》《学术英语写作》《实验数据处理与英文科技写作》《化学化工专业英语》等课程,培养毕业21名硕士,在读15名研究生;1人获省优秀硕士学位论文奖、1人获省优秀硕士学位论文提名,4人获校优秀学位论文奖。指导双创大赛及挑战杯等项目20余个。主持国家级教育专项课题1项,省级教改项目2项,获省级教学成果奖3项。
科研项目
[1] 基于构筑相界面缓冲域调控炭膜气体分离性能机制的研究, 辽宁省自然科学基金(面上项目) (2021-MS-238) 2021.8-至今, 在研
[2] 超亲水/疏油性炭膜的结构设计、可控制备及分离机制的研究, 辽宁省教育厅科学研究项目(LJGD2020002), 2021-至今, 在研
[3] 基于分离-催化协同效应强化甲醇制氢反应的催化炭膜研究(RC200325),沈阳市中青年科技创新人才计划项目, 2021-至今, 在研
[4] 用于在线制氢的高性能催化炭膜制备及膜反应器组装应用研究,(2018921046), 辽宁省“百千万人才工程”人选科技活动支持项目,2018.5-2022.12,结题
[5]具有规则且垂直于表面微孔结构炭膜的可控性制备研究, 国家自然科学基金(20906063), 2010-2012, 结题。
[6]催化炭膜制备及其强化化学反应过程的研究, 辽宁省自然科学基金(20102170),2011-2014, 结题。
[7]新型膜材料开发, 辽宁省高等学校优秀人才(LJQ2012010), 2012-2015;结题。
[8]微孔膜的应用基础研究, 辽宁省教育厅科学计划项目 (No.2008498), 2008-2011, 结题。
[9]功能炭膜制备及膜催化应用研究, 精细化工国家重点实验室基金(KF1107), 2012-2014, 结题。
[10]聚酰亚胺基碳膜的制备及其气体分离性能研究, 功能材料辽宁省教育厅重点实验室基金(USTLKFSY201507), 2015-2017, 结题。
[11]催化炭膜的可控制备及在炼厂制氢中应用基础的研究, 辽宁省自然科学基金(201602551), 2016-2018, 结题。
授权专利
[1] 一种调控聚丙烯腈纳滤膜截留率的预氧化方法. 发明专利授权号201410048187.2,授权日2016.6.1
[2] 一种用于油水分离的炭膜的制备方法.发明专利授权号201410127314.8,授权日2016.1.20
[3] 一种炭膜反应器及其使用方法.发明专利授权号ZL201010118376.4,授权日2012.05.23
[4] 一种制备有序多孔炭膜的基质诱导法,发明专利授权号ZL201110330039.6,授权日2015.03.11
[5] 一种制备催化炭膜的共混热解法. 发明专利授权号ZL201210181582.9,授权日2017.02.08
[6] 一种用于调控炭膜气体分离性能的磁场干预成膜方法. 发明专利授权号201210496233.6,授权日2017.8.25
[7] 一种叠层结构多孔催化炭膜的制备方法, 发明专利申请号201710651140.9, 授权日2020.03.17
[8] 一种净化含油废水炭膜的性能调控方法, 发明专利申请号201711326569.7,申请日2017.12.13。授权日2021.5.14
[9] 一种用于调控炭膜气体分离性能的磁场装置, 授权号ZL201220713366.X,授权日2013.06.12
[10] 一种气体分离膜渗透仪的改进方法,授权号ZL2005102007928,授权日2013.06.12
[11] 聚醚砜酮基气体分离炭膜的制备方法,授权号ZL20051020079327,授权日2009.07.01
发表文章
[42] An immersing solution protocol for enhancing the separation performance of microfiltration carbon membranes for oily wastewater, Surfaces and Interfaces, 2023, 41: 103274
[41] Highly efficient removal of emulsified oil from oily wastewater by microfiltration carbon membranes made from phenolic resin/coal, Environ Technol, 2023, 2226881.
[40] Constructing a composite microfiltration carbon membrane by TiO2 and Fe2O3 for efficient separation of oil-water emulsions, Environ Sci Pollut Res, 2023, 30: 92027–92041.
[39] Ultra-selective microfiltration SiO2/carbon membranes for emulsified oil-water separation, J Environ Chem Eng, 2022, 10(3): 107848
[38] Surface synthesis of a polyethylene glutaraldehyde coating for improving the oil removal from wastewater of microfiltration carbon membranes. J Water Process Eng, 2022, 47: 102724.
[37] Optimizing the microstructure and separation performance of emulsified oil from wastewater of microfiltration carbon membranes enabled with PAN fibers, Chem Eng Res Des, 2022, 184: 566-576.
[36] Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene glycol)/NaY zeolite. Journal of Membrane Science, 2021, 627: 119239.
[35] Enhanced separation performance of microfiltration carbon membranes for oily wastewater treatment by an air oxidation strategy, Chem Eng Processing: Process Intensification, 2021, 169: 108620.
[34] Highly permeable and selective sepiolite hybrid mixed matrix carbon membranes supported on plate carbon substrates for gas separation. Chem Eng Res Des, 2021, 174: 319-330. Cover image期刊封面
[33] Fabrication of Pebax/SAPO mixed matrix membranes for CO2/N2 separation, J App Polym Sci, 2021, 138(45): e51336.
[32]基于TiO2溶胶杂化的分子筛炭膜制备及其结构与性能, 化工学报,2021, 72(8): 4418-4424.
[31] Preparation and characterization of ACF/carbon composite membranes for efficient oil/water separation, Journal of Environmental Chemical Engineering, 2021, 9(3): 105164.
[30] Progress and prospects of hydrogen production: opportunities and challenges. Journal of Electronic Science and Technology, 2021, 19(2): 97-118.
[29] Preparation and characterization of CO2-selective Pebax/NaY mixed matrix membranes, J Appl Polym Sci, 2020, 137(9): 48398. Cover image期刊封面
[28] Tailoring the structure and property of microfiltration carbon membranes by polyacrylonitrile-based microspheres for oil-water emulsion separation, Journal of Water Process Engineering, 2019, 32: 100973.
[27] Investigation of attapulgite hybrid carbon molecular sieving membranes for permanent gas separation, Chemical Engineering Research and Design, 2019, 151: 146-156.
[26] The positive/negative effects of bentonite on O2/N2 permeation of carbon molecular sieving membranes. Micropor Mesopor Materials, 2019, 285: 142-149.
[25] A simple one-step drop-coating approach on fabrication of supported CMSMs with high gas separation performance. Asia-Pacific Journal of Chemical Engineering, 2018, 13(6): e2251.
[24] Effects of Diatomaceous Earth Addition on the Microstructure and Gas Permeation of Carbon Molecular Sieving Membranes. ChemistrySelect, 2018, 3(29): 8428-8435.
[23] Structural Characterization and Properties of ODPA-ODA Polyetherimide Membranes Modified By Ethylene Glycol. Polymer Bulletin, 2018, 75(12): 5825-5842.
[22] Preparation and characterization of a diatomite hybrid microfiltration carbon membrane for oily wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89: 39-48.
[21] Removal of phenol and phosphoric acid from wastewater by microfiltration carbon membranes. Chemical Engineering Communications, 2018, 205 (10): 1432 - 1441.
[20] Process Intensification of The Hydrogen Production Reaction Using A Carbon Membrane Reactor: Kinetics Analysis. Energy Technology, 2017, 5(11): 1990-1997,
[19] Facile preparation of ODPA-ODA type polyetherimide-based carbon membranes by chemical crosslinking. Journal of Applied Polymer Science, 2017, 134(23): app.44889
[18] Effect of a heat pretreatment on the structure and properties of carbon supports for carbon membranes. Canadian Journal of Chemical Engineering, 2017, 95(11): 2112–2119. Issue Highlights期刊亮点
[17] Fabrication and gas permeation of CMS/C composite membranes based on polyimide and phenolic resin. RSC Advances, 2016, 6(79): 75390 - 75399.
[16] Preparation and applications of microfiltration carbon membranes for the purification of oily wastewater. Separation Science and Technology, 2016, 51(11):1872 - 1880.
[15]具有高氢渗透分离性的沸石杂化支撑炭膜的制备. 无机材料学报,2016,31(3):257-262.
[14] Effect of membrane-casting parameters on the microstructure and gas permeation of carbon membranes. RSC Advances, 2015, 5(74): 60345-60353.
[13] Preparation and characterization of carbon and carbon/zeolite membranes from ODPA-ODA type polyetherimide. Journal of Membrane Science, 2015, 474:114-121.
[12] Fabrication and Application of Catalytic Carbon Membranes for Hydrogen Production from Methanol Steam Reforming. Ind. Eng. Chem. Res., 2015, 54(2): 623-632.
[11] Modification of the desalination property of PAN-based nanofiltration membranes by a preoxidation method. Desalination, 2015, 357: 208-214.
[10] Structure and gaspermeation of nanoporous carbon membranes based on RF resin/F-127 with variable catalysts. Journal of Materials Research, 2014, 29(23): 2881-2890.
[9] Preparation and characterization of supported ordered nanoporous carbon membranes for gas separation. Journal of Applied Polymer Science, 2015, 131 (4):2136-2146, 2014.
[8] Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation. Separation Science and Technology, 2015, 49 (2): 171–178, 2014.
[7] Microporous carbon membranes from sulfonated poly(phthalazinone ethersulfone ketone): Preparation, characterization and gas permeation. Journal of Applied Polymer Science, 122 (2): 1190-1197, 2011.
[6] Preparation and characterization of carbon membranes derived frompoly(phthalazinone ether sulfone) for gas separation. Ind. Eng. Chem. Res. 2009, 48 (6): 2886–2890.
[5] Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. Journal of Membrane Science, 2009, 330: 319-325.
[4] Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Separation and Purification Technology, 2008, 60: 259–263.
[3] Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon, 2006, 44 (13): 2764-2769.
[2] Structure and morphology of microporous carbon materials derived from poly(phthalazinone ether sulfone ketone). Microporous and Mesoporous Materials, 2006, 96(1-3):79-83.
[1] Zeolite married to carbon-a new family of membrane materials with excellent gas separation performance. Chem. Mater., 2006, 18(26): 6283-6288.
[1] Zhang B. Chapter 20 Nanoporous Carbon Membranes, in <<Carbon Nanomaterials Sourcebook: Nanoparticles, Nanocapsules, Nanofibers, Nanoporous Structures, and Nanocomposites>>, Volume II. Edited by Klaus D. Sattler, Taylor & Francis (CRC Press), 2016, Pages 447–463, Print ISBN: 978-1-4822-5270-5, eBook ISBN: 978-1-4822-5271-2, DOI: 10.1201/b19568-25(专著章节)
[2] Zhang B, Wu Y. Chapter 8. Carbon membranes for ultrafiltration-nanofiltration. <<Carbon Membrane Technology: Fundamentals and Applications>> CRC Press/Taylor and Francis Group. November 25 2020, ISBN 9781138333376. (专著章节)